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A. Introduction	
	
Nowadays,	a	rapid	increase	on	contents	of	

images,	videos	and	other	media	raises	challenges	
on	multimedia	processing.	Although	modern	

computers	or	mobile	devices	have	much	more	
computational	and	storage	resources	than	before,	
a	system	for	handling	billion-scale	medias	still	
requires	excessive	power	beyond	them.	An	
efficient	and	performant	processing	pipeline	is	
needed	to	meet	such	conditions.	

Compact	representations	and	corresponding	
technology	are	designed	for	such	a	large-scale	

multimedia	processing,	including	image	and	video	
compression	[1,2,3],	retrieval	[4,5,6],	synthesis	
[7,8,9,27],	etc.	Other	than	full-precision	data,	
compact	representations	use	binary	or	low-bit	
values	to	formulate	feature	vectors,	operators,	
and	neural	network	weights.	The	storage	is	
reduced	by	10-100x	while	processing	speed	is	
accelerated	via	XOR,	bit-count,	lookup-table	and		

	
	
	

	

	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	

other	operators	with	hardware	support	[10].	By	
applying	it	to	the	above	multimedia	systems,	the	
severe	challenge	of	storage	space	and	power	
consumption	is	largely	alleviated.	
	

	
Figure	1.	Typical	applications	of	compact	representations.	

	
  Today’s	compact	representation	algorithms,	e.g.,		
quantization	and	hashing	are	applied	in	a	significant		
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wide	space	with	heavy	development.	For	visual	
compression,	we	could	observe	a	steady	
improvement	on	compression	ratio	and	quality	

from	the	classical	JPEG	image	compression	codec	
[1]	to	the	latest	neural	image	compression	
networks	[2].	Similarly,	a	lot	of	vector	libraries	are	
emerged	for	large-scale	data	indexing	and	
retrieval,	e.g.,	faiss	[6],	milvus	[11].	Thanks	to	the	
support	of	compact	representations,	a	search	in	
the	billion-scale	database	is	reduced	to	a	few	

milliseconds	and	is	conducted	completely	in	
memory.	The	recently	popular	tokenized	image	
synthesis	models	VQ-GAN	[8]	and	variants	have	
initiated	the	new	fashion	of	Artificial	Intelligence	
Generated	Contents	(AIGC).	The	compact	image	
tokens	are	obtained	by	a	learnt	vector	quantizer,	
which	hold	abundant	visual	and	semantic	
information	to	generate	amazing	arts,	

photographs	and	cartoons.	Note	that	all	the	above	
techniques	involve	compact	representations	and	
make	a	great	contribution	to	the	current	
multimedia	society	in	terms	of	power	
consumption,	storage,	etc.	Next,	a	brief	
introduction	of	the	fundamental	techniques	for	
them	is	brought.	

	
B. Approaches	

	
A	regular	vector	held	in	computer	is	

represented	as	an	array	of	floating-point	
numbers,	32	bits	for	each.	The	goal	of	
generating	compact	representation	is	to	
compress	it	into	short	binaries	via	

hashing	or	quantization	and	keeps	key	
information	preserved.	

	

B.1.	Hashing	
	
A	hash	function	reduces	high-dimensional	

data	to	a	few	fixed	binary	values,	where	similar	
data	are	allocated	into	similar	hash	values	to	keep	
the	affinities.	Therefore,	the	data	distribution	

could	be	partially	preserved	by	the	converted	
binaries.	It	is	commonly	used	for	data	clustering	
and	nearest	neighbor	search.	The	famous	Locality	
Sensitive	Hashing	(LSH)	family	[5]	takes	a	concept	
to	assign	data	into	“buckets”	while	data	collisions	
are	maximized.	Similarly,	MinHash	[12],	Random	
Projection	[13],	etc.	are	designed	in	a	data-

independent	way	to	achieve	the	goal,	while		

	

	

	

Locality-Preserving	Hashing	performs	in	a	data-
dependent	way.	Furthermore,	by	utilizing	semantic	
information	to	help	data	hashing,	we	could	map	data	
inputs	according	to	their	semantic	similarity.	

	

Figure	2.	Demonstration	of	LSH	family.	They	try	to	

maximize	collision	of	similar	inputs	in	the	hash	table.	

There	is	another	approach	to	obtain	hashing	
function	that	by	several	typical	machine	learning	

algorithms,	called	learning	to	hash	[4].	Other	than	
hand-crafted	hashing	rules,	this	kind	of	method	uses	
mapping	model,	such	as	linear	projection,	to	reduce	
feature	dimension	and	binarize	output	by	sign	
function.	Neighborhood	structure	from	input	to	
output	is	preserved	by	defining	objective	function	
and	performing	optimization	on	mapping	model.	
Then,	the	implicit	hashing	function	is	learnt	and	held	

in	model.	

Optimizing	hashing	models	are	not	easy	since	
finding	an	appropriate	hashing	output	involves	
discrete	and	combinatorial	optimization.	Thus,	a	few	
heuristic	algorithms	are	employed	for	it,	e.g.,	
coordinate	descent	in	supervised	discrete	hashing,	
or	a	smooth	relaxation	over	sign	function	to	make	it	
differentiable.	

	

B.2.	Quantization	
	
Quantization	acts	like	hashing	since	it	also	

converts	the	raw	full-precision	data	into	a	series	of	
binary	codes.	While	hashing	directly	makes	
comparison	over	hashing	outputs,	i.e.,	Hamming	
distance	between	different	hashing	codes,	
quantization	uses	a	codebook	to	reconstruct	original	

data	while	successive	computations	are	happened	in	
the	reconstructed	feature	space.	

Specifically,	a	scalar	quantization	is	simple	yet	
efficient	since	the	implementation	is	rather	naïve.	It	
directly	performs	a	rounding	on	floating-point	
numbers.	Extended	from	this,	a	normal	vector		
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quantization	maps	vectors	to	its	nearest	centroid,	
which	is	obtained	by	k-means	[14].	Firstly,	data	
are	clustered	by	a	few	codewords,	which	are	the	
representative	vector	on	behalf	of	all	
neighborhoods.	Combining	all	the	codewords	we	

obtain	a	codebook.	Then,	each	input	data	is	
replaced	by	its	nearest	codeword	and	is	stored	by	
the	index	of	codeword.	Therefore,	the	
quantization	result	of	each	vector	is	a	single	value,	
whose	upper-bound	is	the	total	amount	of	
codewords.	It	represents	as	fixed-length	binaries	
in	the	storage.	

	

Figure	3.	Demonstration	of	vector	quantization.	By	
clustering	over	input	data,	centers	are	collected	as	

codebook.	Every	input	is	assigned	to	its	nearest	center.	

The	classical	vector	quantization	is	effective	
and	has	been	used	for	a	long	time,	but	it	has	
disadvantages	in	computational	and	space	
complexity,	which	is	linearly	related	to	the	
codebook	size.	The	quantization	precision	is	also	
limited	with	the	total	training	data	points	since	
codebook	size	could	not	be	larger	than	training	set	
size.	Therefore,	product	quantization	is	developed	

to	fix	the	above	issues	by	splitting	raw	data	into	a	
few	orthogonal	feature	subspaces	and	quantizing	
separately	by	independent	codebooks	[15].	
Therefore,	the	above	complexity	is	reduced	to	
logarithm-scale	and	the	training	becomes	flexible.	
Further	variants	on	vector	quantization	include	
composite	quantization	[16],	additive	
quantization	[17],	etc.	Note	that	the	latter	would	

be	the	super	set	of	the	former	for	the	
aforementioned	algorithms	with	an	improved	
performance.		

	

C. Applications	
	
As	above	demonstrates,	we	have	two	

powerful	tools	for	generating	compact		
	
	

	
	
	

representations.	Both	of	them	have	a	long-time	
attraction	and	are	under	heavy	development.	
Correspondingly,	there	are	a	lot	of	applications	to	

integrate	them	into	novel	multimedia	systems.	
	

C.1.	Visual	Compression	
	

Compact	representations	play	the	fundamental	
role	in	the	pipeline	of	image	compression,	video	
compression	and	other	widespread	data	
compression	techniques,	since	redundancies	
naturally	exist	in	visual	data	and	could	be	
compressed	by	compact	representations.	For	
instance,	a	large	area	of	blue	sky	contains	low-
frequency	information	mostly	and	could	be	

represented	by	very	few	bits	of	a	single	color.		
Conventional	codecs	for	visual	compression	

consist	of	transform	coding,	quantization,	entropy	
coding,	etc.	Such	practices	have	been	confirmed	as	
standards	in	modern	image/video	coding	standards	
such	as	JPEG,	H.264,	VVC,	etc	[3].			

	
Figure	4.	Typical	operation	diagram	of	a	neural	

image	compressor.	

With	the	development	of	deep	learning,	
compressing	visual	data	by	a	neural	network	
becomes	a	new	fashion.	It	replaces	the	pre-	and	post-	
transform	coding	by	the	neural	network	to	convert	
and	reconstruct	images	to/from	quantized	latent	
features	in	a	variational	auto-encoder	style.	
Meanwhile,	a	Straight-Through	Estimator	(STE)	is	
applied	on	the	quantization	operation	to	enable	end-

to-end	training	via	stochastic	gradient	descent.	With	
the	capacity	of	weights	in	neural	networks	and	
design	of	entropy	models,	deep	image	compression	
achieves	superior	performance	than	conventional	
ones.	Recent	works	also	extend	quantization	
operations	to	multi-codebook	vector	quantization	to	
significantly	enhance	coding	efficiency	[18].	With	
these	methods,	one	could	obtain	100-200x	

compression	ratio	compared	to	raw	images	without	
perceptible	artifacts.	
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C.2.	Fast	Retrieval	
	
Adopting	hashing	and	quantization	to	

perform	fast	retrieval	is	suitable	since	they	could	
find	approximate	nearest	neighbors	in	an	efficient	
way	with	power	of	hardware	acceleration.	

Moreover,	the	inverted	file	index	could	be	built	
upon	them	to	further	increase	search	speed	with	a	
non-exhaustive	search.	Therefore,	for	million-
scale	and	larger	databases,	several	vector	search	
software	toolkits	are	developed	for	production,	
e.g.,	faiss,	milvus.	A	huge	number	of	applications	
are	boosted	by	them,	including	but	not	limited	to	
search	engines,	e-commerce,	database	indexing.	

We	would	introduce	a	typical	application:	fast	
image	retrieval,	which	digests	images	into	short	
binary	codes	to	formulate	a	database	and	provides	
ways	to	find	similar	images	of	a	query.	To	achieve	
this,	we	could	directly	take	image	descriptors	such	
as	SIFT,	GIST	to	extract	features	of	images	and	
obtain	compact	representations	with	the	above	
methods.	On	the	other	hand,	with	the	help	of	deep	

neural	networks,	an	end-to-end	fast	image	
retrieval	model	could	be	made	up	with	a	network	
as	backbone	and	a	hashing/quantization	layer	on	
top	of	it	[19].	Objective	functions	are	designed	to	
increase	intra-class	similarity	and	decrease	inter-
class	similarity	based	on	training	image	labels.	
Then,	the	images	of	same	category	are	clustered	
together	in	order	to	organize	the	database.	During	

retrieval,	query	image	is	firstly	transformed	into	
binary	code	in	the	same	way	and	search	by	
distance	in	the	compact	feature	space,	which	
could	be	accelerated	by	XOR	(hashing)	or	look-up	
tables	(quantization).	

	

C.3.	Tokenized	Image	Synthesis	
and	Recognition	

	

Another	important	application	that	involves	
compact	representations	is	tokenized	image	
synthesis.	Formally,	it	utilizes	and	quantizes	
feature	vectors	extracted	from	a	visual	model,	
typically	neural	networks,	and	use	the	quantized	
results	for	further	generation	or	recognition.	Such	
an	operation	is	dubbed	tokenization.	

	

	

	

	

	

	

	

Figure	5.	Demonstration	of	text	to	image	synthesis	by	using	

tokens	and	transformers.	

Specifically,	VQ-VAE	[7]	constructs	a	VAE	model	
while	latent	features	produced	by	encoder	are	
quantized	by	a	codebook.	By	controlling	the	
quantization	value,	the	decoder	could	generate	fake	
images.	VQ-GAN	uses	transformer	to	enhance	the	
generation	ability	upon	the	former.	It	also	bridges	
multi-modal	visual	generation	by	unifying	them	into	
codewords.	

With	guide	of	quantized	latent	features	of	
images,	we	would	also	perform	visual	recognitions.	
DALL-E	[9],	BeiT	[20],	CLIP	[21],	etc.	bring	the	idea	
to	produce	classification	results	by	formulating	
image	tokens	as	sequence	and	performing	sequence-
to-sequence	translation	by	transformers.	They	
achieve	satisfying	performance	and	outperform	
convolutional	networks	of	similar	model	size	

significantly.	

	

C.4.	Model	Compression	
	
The	above	applications	utilize	deep	neural	

networks	to	obtain	powerful	and	abundant	latent	
representations	and	achieve	better	performance	
than	conventional	machine	learning	algorithms,	thus	
become	the	current	fashion.	However,	the	model	size	
and	inference	time	of	deep	networks	block	them	
from	running	on	devices	with	limited	resources,	such	
as	mobile	phones.	Therefore,	such	demands	make	

model	compression	become	an	important	topic	
which	benefits	for	deployment	in	real	world.	

	
Involved	in	model	compression,	binarizing	or	

quantizing	the	model	weights	and	intermediate	
activations	are	basic	ways	for	reducing	model	size.	It	
works	since	such	values	are	also	floating-point		

	

	
	



N C T ·F E B U A R Y 2023 
 

12 

F EAT U R ED AR T I C L E 
	

	

	
	
	

vectors	or	matrices	that	could	be	converted	into	
compact	representations.	By	using	hashing	and	
scalar	quantization	techniques,	the	compression	

procedure	is	approximated	by	STE	or	relaxing	for	
optimization.	After	training,	a	model	with	low-bit	
weights	and	activations	would	be	obtained,	which	
has	a	small	size	and	the	inference	could	be	
accelerated	by	XOR	and	bit-count	operations	[22].	
To	achieve	good	performance,	knowledge	
distillation	and	weights	regularization	are	

adopted.	The	former	forces	small	model	to	have	
similar	activations	with	large	models,	while	the	
latter	prevents	model	to	output	trivial	results	
[23].	
	

D.	Challenges	
	

As	a	technique	that	receives	attention	in	a	
long	time,	compact	representations	are	now	come	
with	several	powerful	toolkits.	Models	or	hand-
crafted	algorithms	are	well	developed	and	could	
produce	desired	performance.	However,	there	still	

has	a	few	scenarios	that	previous	works	rarely	
study	or	could	not	handle	well,	especially	for	the	
realistic	tasks.	Next,	we	would	explain	them	in	
detail.	

Since	discrete	optimization	over	binaries	is	
involved	in	compact	representations,	which	is	
generally	NP-hard,	a	lot	of	works	focus	on	finding	
a	solid	solution	to	give	near-optimal	results.	There	

are	several	remaining	issues.	For	hand-crafted	
approaches,	they	either	add	constraints	on	it,	
which	blocks	them	from	the	global-optima,	or	take	
a	high	time	or	space	complexity	for	solving	the	
problem.	For	deep	learning	based	approaches,	
they	would	be	trapped	in	local-optima	where	
hashing	layer	produces	trivial	results	or	

quantization	falls	into	the	“codebook	collapse”	
problem.	A	few	works	try	to	tackle	the	above	
issues	such	as	UNQ	[24]	and	SQ-VAE	[25],	but	a	
theoretical	study	on	them	remains	rarely	
explored.	

Due	to	the	sensitivity	of	compact	
representations,	i.e.,	data	would	be	assigned	with	
wrong	binary	value	when	inputs	have	distribution	

shift,	current	works	result	in	bad	performance	
especially	when	they	meet	novel	inputs	that	are	
from	other	domains	or	categories.	Note	that	a	
fine-tuning	on	models	is	not	feasible	since	the	new	
model	would	have	gaps	on	representations	with		

	
	

	
	
	

the	old	one,	especially	for	tasks	like	fast	retrieval,	
meaning	that	the	retrieval	database	has	to	be	re-
built.	Unfortunately,	there	are	few	works	to	study	

this	problem	[26].	
This	article	makes	a	brief	introduction	to	

current	advances	in	compact	representations.	
Typical	approaches	such	as	hashing	and	quantization	
and	corresponding	optimization	algorithms	are	
explained.	Applications	that	involve	compact	
representations	are	introduced,	while	possible	

challenges	are	demonstrated.	We	could	confirm	that	
compact	representations	have	wide	use	cases	and	
potential	improvements	exist	as	the	current	research	
goes	on.	
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